Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is caused by the expansion of a genetically unstable polyglutamine-encoding CAG repeat in ATXN3. Longer alleles are generally associated with earlier onset and frequent intergenerational expansions mediate the anticipation observed in this disorder. Somatic expansion of the repeat has also been implicated in disease onset and slowing the rate of somatic expansion has been proposed as a therapeutic strategy. Here, we utilised high-throughput ultra-deep MiSeq amplicon sequencing to precisely define the number and sequence of the ATXN3 repeat, the genotype of an adjacent single nucleotide variant and quantify somatic expansion in blood and buccal swab DNA of a cohort of individuals with SCA3 from the Azores islands (Portugal). We revealed systematic mis-sizing of the ATXN3 repeat and high levels of inaccuracy of the traditional fragment length analysis that have important implications for attempts to identify modifiers of clinical and molecular phenotypes. Quantification of somatic expansion in blood DNA and multivariate regression revealed the expected effects of age at sampling and CAG repeat length, although the effect of repeat length was surprisingly modest with much stronger associations with age. We also observed an association of the downstream rs12895357 single nucleotide variant with the rate of somatic expansion, and a higher level of somatic expansion in buccal swab DNA compared to blood. These data suggest that the ATXN3 locus in SCA3 patients in blood or buccal swab DNA might serve as a good biomarker for clinical trials testing suppressors of somatic expansion with peripheral exposure.
© 2024. The Author(s).