Influence of Poly(Ethylene Glycol) Dimethacrylates' Chain Length on Electrical Conductivity and Other Selected Physicochemical Properties of Thermally Sensitive N-isopropylacrylamide Derivatives

Polymers (Basel). 2024 Sep 30;16(19):2786. doi: 10.3390/polym16192786.

Abstract

Thermosensitive polymers P1-P6 of N-isopropylacrylamide (PNIPA) and poly(ethylene glycol) dimethacrylates (PEGDMAs), av. Mn 550-20,000, were synthesized via surfactant-free precipitation polymerization (SFPP) using ammonium persulfate (APS) at 70 °C. The polymerization course was monitored by the conductivity. The hydrodynamic diameters (HDs) and the polydispersity indexes (PDIs) of the aqueous dispersion of P1-P6 in the 18-45 °C range, assessed via dynamic light scattering (DLS), were at 18° as follows (nm): 73.95 ± 19.51 (PDI 0.57 ± 0.08), 74.62 ± 0.76 (PDI 0.56 ± 0,01), 69.45 ± 1.47 (PDI 0.57 ± 0.03), 196.2 ± 2.50 (PDI 0.53 ± 0.04), 194.30 ± 3.36 (PDI 0.56 ± 0.04), 81.99 ± 0.53 (PDI 0.56 ± 0.01), 76.87 ± 0.30 (PDI 0.54 ± 0.01), respectively. The electrophoretic mobilities estimated the zeta potential (ZP) in the 18-45 °C range, and at 18 °C they were as follows (mV): -2.57 ± 0.10, -4.32 ± 0.67, -5.34 ± 0.95, --3.02 ± 0.76, -4.71 ± 2.69, -2.30 ± 0.36, -2.86 ± 0.42 for polymer dispersion P1-P6. The polymers were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), H nuclear magnetic resonance (1H NMR), thermogravimetric analysis (TG/DTA), Differential Scanning Calorimetry (DSC), and powder X-ray diffraction analysis (PXRD). The length of the cross-linker chain influences the physicochemical properties of the obtained polymers.

Keywords: N-isopropylacrylamide; ammonium persulfate; anionic initiator; electrical conductivity; lower critical temperature solution; nanoparticles; poly(ethylene glycol) dimethacrylates.