Lung cancer brain metastasis (LCBM) poses a significant clinical challenge due to acquired resistance to tyrosine kinase inhibitor (TKI) treatment. To elucidate its underlying mechanisms, we employed single-cell RNA sequencing analysis on surgically obtained LCBM samples with diverse genetic backgrounds and TKI treatment histories. Our study uncovers that TKI treatment elevates the immune checkpoint CTLA4 expression in T cells, promoting an immune-suppressive microenvironment. This immunomodulation is initiated by tumor-derived HMGB1 in response to TKIs. In LCBM syngeneic murine models with TKI-sensitive or TKI-resistant EGFR mutations, combining CTLA4 blockade with TKIs demonstrates enhanced efficacy over TKI monotherapy or TKIs with PD1 blockade. These findings provide insights into the TKI resistance mechanisms and highlight the potential of CTLA4 blockade in effectively overcoming TKI resistance in LCBM.
Copyright © 2024 Elsevier Inc. All rights reserved.