Objective: Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by reduced responsiveness of body cells to insulin, leading to elevated blood sugar levels. CNOT6L is involved in glucose metabolism, insulin secretion regulation, pancreatic beta-cell proliferation, and apoptosis. These functions may be closely related to the pathogenesis of T2D. However, the exact molecular mechanisms linking CNOT6L to T2D remain unclear. Therefore, this study aims to elucidate the role of CNOT6L in T2D.
Methods: The T2D datasets GSE163980 and GSE26168 profiles were downloaded from the Gene Expression Omnibusdatabase generated by GPL20115 and GPL6883.The R package limma was used to screen differentially expressed genes (DEGs). A weighted gene co-expression network analysis was performed. Construction and analysis of the protein-protein interaction (PPI) network, functional enrichment analysis, gene set enrichment analysis, and comparative toxicogenomics database (CTD) analysis were performed. Target Scan was used to screen miRNAs that regulate central DEGs. The results were verified by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), western blotting (WB), and blood glucose measurements in mice.
Results: A total of 1951 DEGs were identified. GO and KEGG enrichment analysis revealed that differentially expressed genes were mainly enriched in the insulin signaling pathway, ECM-receptor interaction, and PPAR signaling pathway. Metascape analysis indicated enrichment primarily in the cAMP signaling pathway and enzyme-linked receptor protein signaling pathway. WGCNA analysis yielded 50 intersecting genes. PPI network construction and algorithm identification identified two core genes (CNOT6L and GRIN2B), among which CNOT6L gene was associated with multiple miRNAs. CTD analysis revealed associations of core genes with type 2 diabetes, diabetic complications, dyslipidemia, hyperglycemia, and inflammation. WB and RT-qPCR results showed that in different pathways, CNOT6L protein and mRNA levels were upregulated in type 2 diabetes.
Conclusion: CNOT6L is highly expressed in type 2 diabetes mellitus, and can cause diabetes complications, inflammation and other physiological processes by regulating miRNA, PPAR and other related signaling pathways, with poor prognosis. CNOT6L can be used as a potential therapeutic target for type 2 diabetes.
Keywords: Bioinformatics; CNOT6L; Molecular targets; Type 2 diabetes.
© 2024. The Author(s).