Optimization of Sugar Extraction Process from Date Waste Using Full Factorial Design Toward Its Use for New Biotechnological Applications

BioTech (Basel). 2024 Oct 3;13(4):39. doi: 10.3390/biotech13040039.

Abstract

In Tunisia, the date industry generates a large quantity of waste, raising environmental concerns. However, dates are rich in sugars, which offer a renewable source of nutrients for various applications. In this study, sugar extraction from two low-grade pitted date fruits (Alig and Kentichi) under ultrasound, was optimized using full factorial design. At 40 °C, for20 min, and with a liquid-to-solid ratio of 10 mL/g, the optimum sugar contents were 60.87% and 50.79% for the varieties Alig and Kentichi, respectively. The date extracts were chemically analyzed, revealing low fat and protein contents, but significant polyphenol and mineral contents in both varieties. HPLC-IR analysis revealed more inverted sugars (glucose and fructose) in the Alig variety and more sucrose in the Kentichi variety. FTIR and SEM analysis showed the efficiency of the ultrasonic treatment of the biomass in terms of improving mass transfer diffusion through ultrasonic cavitation. Thus, ultrasound-assisted extraction constitutes an effective method for the recovery of sugar from date waste.

Keywords: date waste; full factorial design; optimization; sugar extraction.

Grants and funding

This research received no external funding.