The purpose of this study is to investigate the influence of different magnetic resonance (MR) sequences on the accuracy of generating computed tomography (sCT) images for nasopharyngeal carcinoma based on CycleGAN. In this study, 143 patients' head and neck MR sequence (T1, T2, T1C, and T1DIXONC) and CT imaging data were acquired. The generator and discriminator of CycleGAN are improved to achieve the purpose of balance confrontation, and a cyclic consistent structure control domain is proposed in terms of loss function. Four different single-sequence MR images and one multi-sequence MR image were used to evaluate the accuracy of sCT. During the model testing phase, five testing scenarios were employed to further assess the mean absolute error, peak signal-to-noise ratio, structural similarity index, and root mean square error between the actual CT images and the sCT images generated by different models. T1 sequence-based sCT achieved better results in single-sequence MR-based sCT. Multi-sequence MR-based sCT achieved better results with T1 sequence-based sCT in terms of evaluation metrics. For metrological evaluation, the global gamma passage rate of sCT based on sequence MR was greater than 95% at 3%/3 mm, except for sCT based on T2 sequence MR. We developed a CycleGAN method to synthesize CT using different MR sequences, this method shows encouraging potential for dosimetric evaluation.
Keywords: CT; CycleGAN; MR; MRI-only based radiotherapy; Multi-sequence; sCT.
© Korean Society of Medical and Biological Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.