CT synthesis with deep learning for MR-only radiotherapy planning: a review

Biomed Eng Lett. 2024 Sep 26;14(6):1259-1278. doi: 10.1007/s13534-024-00430-y. eCollection 2024 Nov.

Abstract

MR-only radiotherapy planning is beneficial from the perspective of both time and safety since it uses synthetic CT for radiotherapy dose calculation instead of real CT scans. To elevate the accuracy of treatment planning and apply the results in practice, various methods have been adopted, among which deep learning models for image-to-image translation have shown good performance by retaining domain-invariant structures while changing domain-specific details. In this paper, we present an overview of diverse deep learning approaches to MR-to-CT synthesis, divided into four classes: convolutional neural networks, generative adversarial networks, transformer models, and diffusion models. By comparing each model and analyzing the general approaches applied to this task, the potential of these models and ways to improve the current methods can be can be evaluated.

Keywords: Computer vision; Deep learning; MR-only radiotherapy planning; MR-to-CT synthesis.

Publication types

  • Review