Natural products, especially isoprenoids have many industrial applications, including medicine, fragrances, food additives, personal care and cosmetics, colorants, and even advanced biofuels. Recent advancements in metabolic engineering with synthetic biology and systems biology have drawn increased interest in microbial-based isoprenoid production. In order to engineer microorganisms to produce a large amount of value-added isoprenoids, great efforts have been made by employing various strategies from synthetic biology and systems biology. We also have engineered E. coli to produce various isoprenoids by targeting and engineering the isoprenoid biosynthetic pathways, methylerythritol phosphate (MEP), and mevalonate (MVA) pathways. Here, we introduced new combinations of the MVA pathway in E. coli with genes from biosafety level 1 (BSL 1) organisms. The reconstituted MVA pathway constructs (pSCS) are not only preferred to the living modified organism (LMO) regulation, but they also improved carotenoid production. In addition, the pSCS constructs resulted in enhanced lycopene production and cell-specific productivity compared to the previous MVA pathway combination (pSNA) in fed-batch fermentation. The pSCS constructs would not only bring an increase in isoprenoid production in E. coli, but they could be an efficient system to be applied for the industrial production of isoprenoids with industry-preferred genetic combinations.
Keywords: Isoprenoids; MVA pathway; Microbial cell factory; carotenoids; synthetic biology.