The dependence of electrophysiological derangements on accumulation of endogenous long-chain acyl carnitine in hypoxic neonatal rat myocytes

Circ Res. 1986 Feb;58(2):230-40. doi: 10.1161/01.res.58.2.230.

Abstract

To determine whether accumulation of long-chain acyl carnitine contributes to electrophysiological abnormalities induced by hypoxia, we characterized effects of normoxic and hypoxic perfusion on the subcellular distribution of endogenous long-chain acyl carnitine and transmembrane potentials of cultured rat neonatal myocytes. Hypoxia increased long-chain acyl carnitine more than 5-fold. Sodium 2-[5-(4-chlorophenyl)-pentyl]-oxirane-2-carboxylate (10 microM), a carnitine acyltransferase inhibitor, precluded accumulation of long-chain acyl carnitine induced by hypoxia. Tissue was processed for electron microscopy by a procedure specifically developed for selective extraction of endogenous short-chain and free carnitine but retention of endogenous long-chain acyl carnitine. In normoxic-perfused cells, long-chain acyl carnitine was concentrated in mitochondria and cytoplasmic membranous components. Only small amounts were present in sarcolemma. Hypoxia increased mitochondrial long-chain acyl carnitine by 10-fold and sarcolemmal long-chain acyl carnitine by 70-fold. After 60 minutes of hypoxia, sarcolemma contained 1.4 X 10(7) long-chain acyl carnitine molecules/micron 3 of membrane volume, a value corresponding to approximately 3.5% of total sarcolemmal phospholipid. Hypoxia also significantly decreased maximum diastolic potential, action potential amplitude and maximum upstroke velocity of phase 0. Sodium 2-[5-(4-chlorophenyl)-pentyl]-oxirane-2-carboxylate inhibited accumulation of long-chain acyl carnitine in each subcellular compartment and prevented the depression of electrophysiological function induced by hypoxia. These results strongly implicate endogenous long-chain acyl carnitine as a mediator of electrophysiological alterations induced by hypoxia.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Animals, Newborn
  • Autoradiography
  • Carnitine / physiology*
  • Electrophysiology*
  • Epoxy Compounds / pharmacology
  • Hypoxia / pathology
  • Hypoxia / physiopathology*
  • Membrane Potentials / drug effects
  • Myocardium / pathology
  • Rats

Substances

  • Epoxy Compounds
  • ethyl 2-(5-(4-chlorophenyl)pentyl)oxiran-2-carboxylate
  • Carnitine