Non-small cell lung cancer (NSCLC) stands as the prevailing manifestation of lung cancer, with current therapeutic modalities linked to a dismal prognosis, necessitating further advancements. Hexokinase 2 (HK2), a critical enzyme positioned on the mitochondrial membrane, exerts control over diverse biological pathways, thereby regulating cancer. Nevertheless, the precise role and mechanism of HK2 in NSCLC remain inadequately elucidated, warranting comprehensive investigation. HK2 expression in NSCLC tissues and cell lines was detected through immunohistochemistry and western blot analysis. Concurrently, shRNA assays were applied to scrutinize the impact of HK2 on cell proliferation, apoptosis, migration, and invasion processes in NSCLC cell lines, utilizing CCK8, flow cytometry, wound-healing assay, and transwell techniques. The involvement of HK2 in mitochondrial dynamics was probed through western blot analysis, mitochondrial membrane potential assay, and assessment of ROS generation. Next, the functional role of HK2 was assessed by examining its influence on xenograft tumor growth in nude mice in vivo. Further research has demonstrated that HK2 played a role in NSCLC through its O-GlcNAcylation process. The results of the study revealed that HK2 O-GlcNAcylation promoted the proliferation, migration, and invasive characteristics of NSCLC cells, while alleviating mitochondrial damage, whereas O-GlcNAcylation inactivation yielded the opposite effect. Furthermore, in vivo experiments in nude mice illustrated that HK2 O-GlcNAcylation could stimulate tumor growth in NSCLC. These results suggested that HK2 may impact mitochondrial dynamics in NSCLC through its O-GlcNAcylation, thereby contributing to the progression of NSCLC.
Keywords: O-GlcNAcylation; Hexokinase 2; Mitochondrial dynamics; NSCLC.
© 2024. The Author(s).