The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake

J Nutr. 1986 Apr;116(4):641-54. doi: 10.1093/jn/116.4.641.


We sought to clarify the impact of dietary restriction (undernutrition without malnutrition) on aging. Female mice from a long-lived strain were fed after weaning in one of six ways: group 1) a nonpurified diet ad libitum; 2) 85 kcal/wk of a purified diet (approximately 25% restriction); 3) 50 kcal/wk of a restricted purified diet enriched in protein, vitamin and mineral content to provide nearly equal intakes of these essentials as in group 2 (approximately 55% restriction); 4) as per group 3, but also restricted before weaning; 5) 50 kcal/wk of a vitamin- and mineral-enriched diet but with protein intake gradually reduced over the life span; 6) 40 kcal/wk of the diet fed to groups 3 and 4 (approximately 65% restriction). Mice from groups 3-6 exhibited mean and maximal life spans 35-65% greater than for group 1 and 20-40% greater than for group 2. Mice from group 6 lived longest of all. The longest lived 10% of mice from group 6 averaged 53.0 mo which, to our knowledge, exceeds reported values for any mice of any strain. Beneficial influences on tumor patterns and on declines with age in T-lymphocyte proliferation were most striking in group 6. Significant positive correlations between adult body weight and longevity occurred in groups 3-5 suggesting that increased metabolic efficiency may be related to longevity in restricted mice. Mice from groups 3-6 ate approximately 30% more calories per gram of mouse over the life span than did mice from group 2. These findings show the profound anti-aging effects of dietary restriction and provide new information for optimizing restriction regimes.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aging*
  • Animals
  • Body Weight
  • Energy Intake*
  • Female
  • Immunity*
  • Longevity*
  • Lymphocytes / physiology
  • Mice
  • Neoplasms / prevention & control*
  • Organ Size
  • Spleen / physiology