Large-scale omics profiling has uncovered a vast array of somatic mutations and cancer-associated proteins, posing substantial challenges for their functional interpretation. Here we present a network-based approach centered on FunMap, a pan-cancer functional network constructed using supervised machine learning on extensive proteomics and RNA sequencing data from 1,194 individuals spanning 11 cancer types. Comprising 10,525 protein-coding genes, FunMap connects functionally associated genes with unprecedented precision, surpassing traditional protein-protein interaction maps. Network analysis identifies functional protein modules, reveals a hierarchical structure linked to cancer hallmarks and clinical phenotypes, provides deeper insights into established cancer drivers and predicts functions for understudied cancer-associated proteins. Additionally, applying graph-neural-network-based deep learning to FunMap uncovers drivers with low mutation frequency. This study establishes FunMap as a powerful and unbiased tool for interpreting somatic mutations and understudied proteins, with broad implications for advancing cancer biology and informing therapeutic strategies.
© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.