Measurement of micronuclei in lymphocytes

Mutat Res. Feb-Apr 1985;147(1-2):29-36. doi: 10.1016/0165-1161(85)90015-9.


The micronucleus technique has been proposed as a method for measurement of chromosomal damage in mitogen-stimulated human lymphocytes. Micronuclei require one cell division to be expressed and, consequently, the conventional micronucleus technique is very imprecise since the cells which have undergone only one division, and the micronuclei in them, cannot be identified separately from the total population of lymphocytes. To overcome this problem, two methods were developed to identify cells which have undergone their first mitosis. Using an autoradiographic technique, lymphocytes were pulse-labelled with [3H]thymidine at 48 h of culture, allowed to proceed through mitosis, identified by autoradiography between 72 and 84 h and micronuclei were scored in them. It was not possible to select a concentration of radiolabel which did not itself produce micronuclei and consequently the method was of no value for measuring pre-existing chromosomal damage present in vivo. However, it was capable of quantitating micronuclei produced by irradiation of lymphocytes in vitro. In the second method, cytokinesis was blocked using cytochalasin B. Micronuclei were scored in cytokinesis-blocked cells. These were easily recognisable owing to their binucleate appearance and a large number could be accumulated by adding 3.0 micrograms/ml cytochalasin B at 44 h and scoring at 72 h. Cytochalasin B did not itself produce micronuclei. The cytokinesis-block method was simple to perform; the 'in vivo' micronucleus frequency in normal individuals was 4.4 +/- 2.6 micronuclei/500 cytokinesis-blocked cells; and for lymphocytes irradiated in vitro there was a linear relationship between dose of radiation and number of induced micronuclei. The cytokinesis-block method appears to be the procedure of choice for quantitating micronuclei in lymphocytes.

MeSH terms

  • Cell Division / drug effects
  • Cell Nucleus / drug effects
  • Cell Nucleus / radiation effects
  • Cell Nucleus / ultrastructure*
  • Cells, Cultured
  • Cytochalasin B
  • Humans
  • Lymphocytes / drug effects
  • Lymphocytes / radiation effects*
  • Mutagenicity Tests / methods*
  • Thymidine
  • X-Rays


  • Cytochalasin B
  • Thymidine