Advancing plant science through precision 3D bioprinting: new tools for research and biotech applications

Curr Opin Biotechnol. 2025 Jan 7:91:103250. doi: 10.1016/j.copbio.2024.103250. Online ahead of print.

Abstract

The integration of 3D bioprinting into plant science and biotechnology is revolutionizing research and applications. While many high-throughput techniques have advanced plant biology, replicating the complex 3D organization and cellular environments of plant tissues remains a significant challenge. Traditional 2D culture systems fall short of capturing the necessary spatial context for accurate studies of cell behavior, gene expression, and tissue development. Additionally, the lack of precise simulation of plant microenvironments limits control over cellular interactions and responses to external stimuli. Recent advancements in 3D bioprinting address these limitations by allowing precise control over cell positioning and biomaterial arrangement, thereby better replicating natural plant environments. This enables more accurate studies of gene expression, developmental processes, and stress responses. The technology also enhances our ability to test genetic modifications and biotechnological interventions, advancing crop improvement, sustainable agriculture, and precision breeding. This review examines the current state of 3D bioprinting in plant science, discusses its limitations, and explores its potential to transform research and applications in the field.

Publication types

  • Review