The pathogenesis of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is generally attributed to vascular smooth muscle cell (VSMC) pathologies. However, the role of immune cell-mediated inflammation remains elusive. Single-cell RNA sequencing identified a subset of CX3CR1+ macrophages mainly located in the intima in the aortic roots and ascending aortas of Fbn1C1041G/+ mice, further validated in MFS patients. Specific elimination of CX3CR1+ cells by diphtheria toxin in Cx3cr1-CreERT2iDTRF/+Fbn1C1041G/+ mice efficiently ameliorated TAA progression. Administering the monoclonal antibodies to respectively neutralize TNF-α and IGF1 produced by CX3CR1+ cells from MFS patients greatly suppressed the cocultured MFS patient-specific induced pluripotent stem cell-derived VSMC inflammation. BM transplantation and parabiosis revealed that CX3CR1+ macrophages are mainly originated from BM-derived monocytes. Targeting TNF-α and IGF1 in CX3CR1+ macrophages via shRNA lentivirus transduction in BM cells efficiently suppressed TAA development in BM-transplanted Fbn1C1041G/+ mice. Application of the CCR2 antagonist RS504393 to inhibit monocyte infiltration markedly reduced the accumulation of CX3CR1+ macrophages and subsequently alleviated TAA progression in Fbn1C1041G/+ mice. In summary, CX3CR1+ macrophages mainly located in aortic intima mediate TAA formation by paracrinally causing VSMC inflammation, and targeting them offers a potential antiinflammatory therapeutic strategy for MFS-related TAA.
Keywords: Cardiovascular disease; Inflammation; Macrophages; Vascular biology.