Colorectal carcinoma brain metastases (n = 60) were studied using next-generation sequencing and immunohistochemistry. RAS and BRAF mutations were detected in 58.2% and 7.3% of cases, respectively. Patients with RAS- and BRAF-mutant tumors could potentially benefit from the treatment with inhibitors. TP53 mutations were detected in 69.1% of metastases. Moreover, altered p53 expression was seen in 91.2% of cases. APC mutations were present in 41.8% of tumors. Diffuse nuclear accumulation of β-catenin was seen in 10.2% of metastases, although only 1 CTNNB1 mutant was identified. Nevertheless, targeting p53 and Wnt/β-catenin pathways may have potential therapeutic implications. Casein kinase 1α1 expression indicating susceptibility to protein kinase inhibitors, was seen in 95% metastases including 10 with strong immunoreactivity. The immune checkpoint marker CD276, a promising target for immunotherapy, was present on tumor cells in 50.8% of metastases and on stromal cells in almost all cases. PRAME, another immunotherapy target, was expressed in 21.7% of tumors. HER2 membrane immunostaining detected in 13.3% of cases implicated potential treatment with HER2 inhibitors. Expression of SLFN11, a predictor of response to DNA-damaging chemotherapies, and a biomarker of sensitivity to PARP inhibitors was seen in 8.3% of tumors. In 6.7% of metastases loss or partial loss of MTAP expression suggested sensitivity to PRMT5 inhibitors. CD44v5 expressed in 35% of cases indicated potential therapeutic utility of anti-CD44v5 monoclonal antibody treatment. Identification of predictive biomarkers through genomic profiling and proteomic analyses is a crucial step toward individually tailored therapeutic regimens for patients with colorectal carcinoma brain metastases.
Keywords: APC; BRAF; Brain; CD276 (B7–H3); CD44v5; Colorectal carcinoma; HER2; Immunohistochemistry; MTAP; Metastases; Next-generation sequencing; PD-1 (CD279); PDL-1 (CD274); PRAME; RAS; SLFN11; TP53.
Copyright © 2025 Elsevier Inc. All rights reserved.