Mitochondria play a key role in the regulation of energy homeostasis and ATP production in cardiac cells. Mitochondrial dysfunction can trigger several pathological events that contribute to the development and progression of cardiovascular diseases. These mechanisms include the induction of oxidative stress, dysregulation of intracellular calcium cycling, activation of the apoptotic pathway, and alteration of lipid metabolism. This review focuses on the role of mitochondria in intracellular signaling associated with cardiovascular diseases, emphasizing the contributions of reactive oxygen species production and mitochondrial dynamics. Indeed, mitochondrial dysfunction has been implicated in every aspect of cardiovascular disease and is currently being evaluated as a potential target for therapeutic interventions. To treat cardiovascular diseases and improve overall heart health, it is important to better understand these biochemical systems. These findings allow the achievement of targeted therapies and preventive measures. Therefore, this review investigates different studies that demonstrate how changes in mitochondrial dynamics like fusion, fission, and mitophagy contribute to the development or worsening of disorders related to heart diseases by summarizing current research on their role.
Keywords: Cardiovascular diseases; Intracellular signaling; Mitochondrial dysfunction; Oxidative stress; Therapeutic interventions.
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.