Exploring the neural mechanisms underlying cooperation and competition behavior: Insights from stereo-electroencephalography hyperscanning

iScience. 2024 Nov 29;28(2):111506. doi: 10.1016/j.isci.2024.111506. eCollection 2025 Feb 21.

Abstract

Cooperation and competition are essential social behaviors in human society. This study utilized hyperscanning and stereo-electroencephalography (SEEG) to investigate intra- and inter-brain neural dynamics underlying these behaviors within the insula and inferior frontal gyrus (IFG), regions critical for executive function and mentalizing. We found distinct high-gamma responses and connectivity patterns, with a stronger influence from IFG to insula during competition and more balanced interactions during cooperation. Inter-brain synchronization shows significantly higher insula gamma synchronization during competition and higher IFG gamma synchronization during cooperation. Cross-frequency coupling suggests that these gamma synchronizations result from intra- and inter-brain interactions. Competition stems from intra-brain alpha-gamma coupling from IFG to insula and inter-brain IFG alpha synchronization, while cooperation is driven by intra-brain beta-gamma coupling from insula to IFG and inter-brain insula beta synchronization. Our findings provide insights into the neural basis of cooperation and competition, highlighting the roles of both insula and IFG.

Keywords: Behavioral neuroscience; Cognitive neuroscience; Neuroscience.