Exploiting metabolic vulnerability in glioblastoma using a brain-penetrant drug with a safe profile

EMBO Mol Med. 2025 Mar;17(3):469-503. doi: 10.1038/s44321-025-00195-6. Epub 2025 Feb 3.

Abstract

Glioblastoma is one of the most treatment-resistant and lethal cancers, with a subset of self-renewing brain tumour stem cells (BTSCs), driving therapy resistance and relapse. Here, we report that mubritinib effectively impairs BTSC stemness and growth. Mechanistically, bioenergetic assays and rescue experiments showed that mubritinib targets complex I of the electron transport chain, thereby impairing BTSC self-renewal and proliferation. Gene expression profiling and Western blot analysis revealed that mubritinib disrupts the AMPK/p27Kip1 pathway, leading to cell-cycle impairment. By employing in vivo pharmacokinetic assays, we established that mubritinib crosses the blood-brain barrier. Using preclinical patient-derived and syngeneic models, we demonstrated that mubritinib delays glioblastoma progression and extends animal survival. Moreover, combining mubritinib with radiotherapy or chemotherapy offers survival advantage to animals. Notably, we showed that mubritinib alleviates hypoxia, thereby enhancing ROS generation, DNA damage, and apoptosis in tumours when combined with radiotherapy. Encouragingly, toxicological and behavioural studies revealed that mubritinib is well tolerated and spares normal cells. Our findings underscore the promising therapeutic potential of mubritinib, warranting its further exploration in clinic for glioblastoma therapy.

Keywords: Hypoxia; Metabolic Reliance; Oxidative Phosphorylation; Radiotherapy; Reactive Oxygen Species.

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacokinetics
  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use
  • Brain Neoplasms / drug therapy
  • Brain Neoplasms / metabolism
  • Brain Neoplasms / pathology
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Disease Models, Animal
  • Glioblastoma* / drug therapy
  • Glioblastoma* / metabolism
  • Glioblastoma* / pathology
  • Humans
  • Mice
  • Neoplastic Stem Cells / drug effects
  • Neoplastic Stem Cells / metabolism

Substances

  • Antineoplastic Agents