Measuring the Thermal Unfolding of Lysozyme: A Critical Comparison of Differential Scanning Fluorimetry and Differential Scanning Calorimetry

ChemistryOpen. 2025 Feb 11:e202400340. doi: 10.1002/open.202400340. Online ahead of print.

Abstract

The thermal unfolding of lysozyme in aqueous solution has been analyzed by (nano) differential scanning fluorimetry (nanoDSF) and differential scanning calorimetry (DSC). In addition, dynamic light scattering (DLS) acquired in parallel to the DSF measurements, was used to confirm that the change in hydrodynamic radius upon unfolding is rather small (RH,f =1.75 nm in the folded state; and RH,u=1.91 nm in the unfolded state). NanoDSF measurements were evaluated to characterize the folding/unfolding transition within the classical two-state folding model. The temperature of unfolding (Tm) is found to be the most robust quantity. The unfolding enthalpy Δ H u ${{\rm \Delta }{H}_{u}}$ and the change of specific heat were also obtained and errors in the range of 5-10 % and 30-50 % were determined, respectively. A comparison of thermodynamic parameters from nanoDSF and DSC measurements provides evidence for an increasing unfolding enthalpy Δ H u ${{\rm \Delta }{H}_{u}}$ with protein concentration. A comparison with data from literature suggests that a weak association in the folded state can lead to the observed change of the unfolding enthalpy. For Δcp significantly higher values is deduced from the analysis of temperature dependent nanoDSF measurements (10 kJ/(K mol)) as compare to DSC (3-5 kJ/(K mol)).