Separation and measurement of short-chain coenzyme-A compounds in rat liver by reversed-phase high-performance liquid chromatography

Anal Biochem. 1985 Apr;146(1):173-9. doi: 10.1016/0003-2697(85)90412-9.


A high-performance liquid chromatographic method has been developed to measure short-chain CoA compounds in freeze-clamped liver. Seventeen CoA compounds can be quantitated in 37 min using a 3-micron octadecylsilica column (4.6 mm X 7.5 cm). The chromatographic separation of CoA compounds is conducted with a gradient system of sodium phosphate and acetonitrile. The large amount of uv-absorbing, non-CoA material present in liver extracts is eluted earlier than the CoA compounds when the phosphate concentration is 0.2 M. The CoA compounds that can be resolved by this method include acetoacetyl-CoA, acetyl-CoA, butyryl-CoA, CoASH, crotonyl-CoA, dephospho-CoA, glutathione-CoA, 3-hydroxy-3-methylglutaryl-CoA, isobutyryl-CoA, isovaleryl-CoA, malonyl-CoA, 3-methylcrotonyl-CoA, methylmalonyl-CoA, oxidized-CoA, propionyl CoA, succinyl-CoA, and valeryl-CoA. Comparisons at pH 3 and 6 showed that the stability of the CoA compounds is much greater when perchloric acid extracts of rat liver are adjusted to pH 3. Recovery of CoA standards added in tissue extracts ranged from 83 to 107%. The method is linear over the range of 12 to 700 pmol, and this sensitivity allows acetyl-CoA content to be determined in extracts of as little as 0.1 mg of liver. The values for CoA compounds obtained for freeze-clamped liver from starved rats include (units are nmol/g wet weight +/- SE) malonyl-CoA, 1.50 +/- 0.14; glutathione-CoA, 6.57 +/- 1.72; CoASH, 56.06 +/- 2.90; methylmalonyl-CoA, 4.60 +/- 1.27; succinyl-CoA, 13.52 +/- 0.76; 3-hydroxy-3-methylglutaryl-CoA, 7.06 +/- 0.89; and acetyl-CoA, 100.5 +/- 6.4.(ABSTRACT TRUNCATED AT 250 WORDS)

MeSH terms

  • Acyl Coenzyme A / isolation & purification*
  • Animals
  • Chemical Phenomena
  • Chemistry
  • Chromatography, High Pressure Liquid
  • Liver / enzymology*
  • Male
  • Rats
  • Rats, Inbred Strains
  • Starvation / enzymology


  • Acyl Coenzyme A