Remodeling of extracellular matrix collagen IV by MIG-6/papilin regulates neuronal architecture

bioRxiv [Preprint]. 2025 Feb 10:2025.02.10.637428. doi: 10.1101/2025.02.10.637428.

Abstract

Neuronal architecture established embryonically must persist lifelong to ensure normal brain function. However, little is understood about the mechanisms behind the long-term maintenance of neuronal organization. To uncover maintenance mechanisms, we performed a suppressor screen in sax-7 / L1CAM mutants, which exhibit progressive disorganization with age. We identified the conserved extracellular matrix protein MIG-6/papilin as a key regulator of neuronal maintenance. Combining incisive molecular genetics, structural predictions, in vivo quantitative imaging, and cutting-edge Brillouin microscopy, we show that MIG-6/papilin remodels extracellular matrix collagen IV, working in concert with the secreted enzymes MIG-17/ADAMTS and PXN-2/peroxidasin. This remodeling impacts tissue biomechanics and ensures neuronal stability, even under increased mechanical stress. Our findings highlight an extracellular mechanism by which MIG-6/papilin supports the integrity of neuronal architecture throughout life. This work provides critical insights into the molecular basis of sustaining neuronal architecture and offers a foundation for understanding age-related and neurodegenerative disorders.

Publication types

  • Preprint