Most Acanthamoebas contain endosymbionts such as viruses, yeasts, protists, and bacteria, some of which are potential human pathogens, including Campylobacter jejuni which often causes gastroenteritis and septicemia in humans. Amoebae have been shown to be resistant to chlorination and apparently protect ingested bacteria such as C. jejuni from free chlorine. Such resistance can have health implications, especially for drinking water treatment. The aim of this study is to identify Acanthamoeba in hospital samples in Markazi province, to determine the identity of C. jejuni endosymbiont in positive samples of Acanthamoeba in natural and laboratory conditions, and to determine the relationship between the two. The main aim of this study was to determine the identity of C. jejuni endosymbiont in Acanthamoeba-positive samples in natural and laboratory conditions. In this study, 134 samples including water, soil, and dust were collected from hospital environments. After molecular detection, the identity of the symbiotic Campylobacter jejuni in Acanthamoeba was determined by microscopic and PCR methods. Then, the ability of bacteria to infect the parasite was examined by cocultivation in vitro using real-time PCR. Finally, their relationship was examined based on statistical tests. The rate of contamination of hospital samples with Acanthamoeba was 44.7% on average. Out of 42 Acanthamoeba PCR-positive samples, seven isolates (16.67%) were found to be positive in terms of C. jejuni endosymbiont according to sampling location. The results showed that Helicobacter is able to penetrate and enter the Acanthamoeba parasite. In conclusion, our results showed that C. jejuni is able to contaminate Acanthamoeba in natural and laboratory conditions. The presence of pathogenic Acanthamoeba in various hospital environments and the hiding of Helicobacter as an endosymbiont inside it can pose a serious threat to the health of hospitalized patients.
Keywords: Acanthamoeba; Campylobacter jejuni; endosymbionts; hospital samples.
Copyright © 2025 Alireza Mohammadi et al. Journal of Parasitology Research published by John Wiley & Sons Ltd.