Structural basis of siderophore export and drug efflux by Mycobacterium tuberculosis

Nat Commun. 2025 Feb 24;16(1):1934. doi: 10.1038/s41467-025-56888-6.

Abstract

To replicate and cause disease, Mycobacterium tuberculosis secretes siderophores called mycobactins to scavenge iron from the human host. Two closely related transporters, MmpL4 and MmpL5, are required for mycobactin secretion and drug efflux. In clinical strains, overproduction of MmpL5 confers resistance towards bedaquiline and clofazimine, key drugs to combat multidrug resistant tuberculosis. Here, we present cryogenic-electron microscopy structures of MmpL4 and identify a mycobactin binding site, which is accessible from the cytosol and also required for bedaquiline efflux. An unusual coiled-coil domain predicted to extend 130 Å into the periplasm is essential for mycobactin and bedaquiline efflux by MmpL4 and MmpL5. The mycobacterial acyl carrier protein MbtL forms a complex with MmpL4, indicating that mycobactin synthesis and export are coupled. Thus, MmpL4 and MmpL5 constitute the core components of a unique multi-subunit machinery required for iron acquisition and drug efflux by M. tuberculosis.

MeSH terms

  • Acyl Carrier Protein / chemistry
  • Acyl Carrier Protein / metabolism
  • Antitubercular Agents / chemistry
  • Antitubercular Agents / metabolism
  • Antitubercular Agents / pharmacology
  • Bacterial Proteins* / chemistry
  • Bacterial Proteins* / genetics
  • Bacterial Proteins* / metabolism
  • Binding Sites
  • Biological Transport
  • Cryoelectron Microscopy*
  • Diarylquinolines* / metabolism
  • Diarylquinolines* / pharmacology
  • Humans
  • Iron / metabolism
  • Membrane Transport Proteins* / chemistry
  • Membrane Transport Proteins* / metabolism
  • Models, Molecular
  • Mycobacterium tuberculosis* / metabolism
  • Oxazoles* / chemistry
  • Oxazoles* / metabolism
  • Siderophores* / chemistry
  • Siderophores* / metabolism

Substances

  • Siderophores
  • Bacterial Proteins
  • mycobactins
  • bedaquiline
  • Diarylquinolines
  • Oxazoles
  • Membrane Transport Proteins
  • Iron
  • Antitubercular Agents
  • Acyl Carrier Protein