Comparative Genome Sequencing Analysis of Some Novel Feline Infectious Peritonitis Viruses Isolated from Some Feral Cats in Long Island

Viruses. 2025 Jan 31;17(2):209. doi: 10.3390/v17020209.

Abstract

Feline infectious peritonitis virus (FIPV) remains as one of the leading causes of morbidity and mortality in young cats from shelters and catteries worldwide. Since little is known about the molecular characteristics of currently circulating FIPV strains in Long Island, New York, samples from two shelter cats submitted to the Pathology Diagnostic Services of the Long Island University College of Veterinary Medicine, with gross and microscopic lesions consistent with those of FIP were processed for virus isolation, molecular characterization and full-length genome decoding. The younger shelter cat, a 1-year-old male (A15) was found dead without previous signs of illness. Postmortem examination revealed gross and microscopic lesions characterized by vasculitis, necrosis, hemorrhage, and pyogranulomatous inflammation confined to the colon and associated lymph nodes. The second cat, a 7-year-old spayed female (A37) had an identical clinical history and similar but widespread lesions, including fibrinous peritoneal effusion, cecal, colonic, renal, and hepatic involvement. The gross and microscopic diagnosis of FIP in these cats was confirmed by immunohistochemistry (IHC) demonstration of feline coronavirus antigen using mouse anti-FIPV3-70 monoclonal antibody. Virus isolation from saved frozen kidney and colon tissue was performed through several subsequent blind passages in MDCK and Vero cell lines. Confirmation of the FIPV isolation was done through qRT-PCR, IFA, western blot using N protein antibodies, and NGS of the full-length genome sequencing. The full-length genome sequences of the virus isolate from the two cats were decoded using next-generation sequencing (NGS) and deposited in the GenBank as accession numbers PQ192636 and PQ202302. The genome size of these isolates was (29355 and 29321) nucleotides (nt) in length, respectively. While their genome organization was consistent with other FIPV genomes as follows (5'UTR-ORF1ab-S-3abc-M-E-7b-3'UTR-3'), marked differential mutations were observed in the ORF1a/b, S, 3Abc, and 7b protein genes of the two FIPV isolates. One notable deletion of 34 nucleotides was observed in the 7b genes of one of these isolates but was absent in the other. We confirmed the potential recombination events during the evolution of those two FIPV field isolates with the potential parent virus as FECoV-US isolated in 1970 and the potential minor parent as the Canine coronavirus. Our results provide a comprehensive molecular analysis of two novel FIPV isolates causing fatal disease in shelter cats from Long Island. Diagnostic surveillance with molecular characterization and sequencing analysis of circulating FIPV strains within animal shelters may help early detect unique emerging clinical and pathological manifestations of the disease and develop more targeted prophylactic and therapeutic approaches to control it.

Keywords: FCoV; FIPV; IFA; IHC; feline coronavirus; feline infectious peritonitis; histopathology; isolation; next generation sequencing (NGS); phylogenetic analysis; qRT-PCR.

MeSH terms

  • Animals
  • Cats
  • Coronavirus, Feline* / classification
  • Coronavirus, Feline* / genetics
  • Coronavirus, Feline* / isolation & purification
  • Feline Infectious Peritonitis* / pathology
  • Feline Infectious Peritonitis* / virology
  • Female
  • Genome, Viral*
  • Male
  • Phylogeny
  • Whole Genome Sequencing