Landscape of 2D Deep Learning Segmentation Networks Applied to CT Scan from Lung Cancer Patients: A Systematic Review

J Imaging Inform Med. 2025 Mar 4. doi: 10.1007/s10278-025-01458-x. Online ahead of print.

Abstract

Background: The increasing rates of lung cancer emphasize the need for early detection through computed tomography (CT) scans, enhanced by deep learning (DL) to improve diagnosis, treatment, and patient survival. This review examines current and prospective applications of 2D- DL networks in lung cancer CT segmentation, summarizing research, highlighting essential concepts and gaps; Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, a systematic search of peer-reviewed studies from 01/2020 to 12/2024 on data-driven population segmentation using structured data was conducted across databases like Google Scholar, PubMed, Science Direct, IEEE (Institute of Electrical and Electronics Engineers) and ACM (Association for Computing Machinery) library. 124 studies met the inclusion criteria and were analyzed.

Results: The LIDC-LIDR dataset was the most frequently used; The finding particularly relies on supervised learning with labeled data. The UNet model and its variants were the most frequently used models in medical image segmentation, achieving Dice Similarity Coefficients (DSC) of up to 0.9999. The reviewed studies primarily exhibit significant gaps in addressing class imbalances (67%), underuse of cross-validation (21%), and poor model stability evaluations (3%). Additionally, 88% failed to address the missing data, and generalizability concerns were only discussed in 34% of cases.

Conclusions: The review emphasizes the importance of Convolutional Neural Networks, particularly UNet, in lung CT analysis and advocates for a combined 2D/3D modeling approach. It also highlights the need for larger, diverse datasets and the exploration of semi-supervised and unsupervised learning to enhance automated lung cancer diagnosis and early detection.

Keywords: 2D Segmentation; Computed Tomography; Deep Learning; Lung Cancer; Review Article.

Publication types

  • Review