Dual-branch dynamic hierarchical U-Net with multi-layer space fusion attention for medical image segmentation

Sci Rep. 2025 Mar 10;15(1):8194. doi: 10.1038/s41598-025-92715-0.

Abstract

Accurate segmentation of organs or lesions from medical images is essential for accurate disease diagnosis and organ morphometrics. Previously, most researchers mainly added feature extraction modules and simply aggregated the semantic features to U-Net network to improve the segmentation accuracy of medical images. However, these improved U-Net networks ignore the semantic differences of different organs in medical images and lack the fusion of high-level semantic features and low-level semantic features, which will lead to blurred or miss boundaries between similar organs and diseased areas. To solve this problem, we propose Dual-branch dynamic hierarchical U-Net with multi-layer space fusion attention (D2HU-Net). Firstly, we propose a multi-layer spatial attention fusion module, which makes the shallow decoding path provide predictive graph supplement to the deep decoding path. Under the guidance of higher semantic features, useful context features are selected from lower semantic features to obtain deeper useful spatial information, which makes up for the semantic differences between organs in different medical images. Secondly, we propose a dynamic multi-scale layered module that enhances the multi-scale representation of the network at a finer granularity level and selectively refines single-scale features. Finally, the network provides guiding optimization for subsequent decoding based on multi-scale loss functions. The experimental results on four medical data sets show D2HU-Net enables the most advanced segmentation capabilities on different medical image datasets, which can help doctors diagnose and treat diseases.

MeSH terms

  • Algorithms
  • Diagnostic Imaging / methods
  • Humans
  • Image Interpretation, Computer-Assisted / methods
  • Image Processing, Computer-Assisted / methods
  • Neural Networks, Computer*
  • Semantics