Beyond-classical computation in quantum simulation

Science. 2025 Mar 12:eado6285. doi: 10.1126/science.ado6285. Online ahead of print.

Abstract

Quantum computers hold the promise of solving certain problems that lie beyond the reach of conventional computers. Establishing this capability, especially for impactful and meaningful problems, remains a central challenge. Here we show that superconducting quantum annealing processors can rapidly generate samples in close agreement with solutions of the Schrödinger equation. We demonstrate area-law scaling of entanglement in the model quench dynamics of two-, three- and infinite-dimensional spin glasses, supporting the observed stretched-exponential scaling of effort for matrix-product-state approaches. We show that several leading approximate methods based on tensor networks and neural networks cannot achieve the same accuracy as the quantum annealer within a reasonable timeframe. Thus quantum annealers can answer questions of practical importance that may remain out of reach for classical computation.