VIEshunt: towards a ventricular intelligent and electromechanical shunt for hydrocephalus therapy

Fluids Barriers CNS. 2025 Mar 14;22(1):28. doi: 10.1186/s12987-025-00629-w.

Abstract

Background: Shunt systems for hydrocephalus therapy are commonly based on passive mechanical pressure valves that are driven by the intracranial, intra-abdominal, and hydrostatic pressure. The differential pressure acting on the valve determines the drainage rate of cerebrospinal fluid (CSF) but is not a gauge of the physiological condition of the patient. Internal and external influences can cause over- or underdrainage and lead to pathological levels of intracranial pressure (ICP).

Methods: The first prototype of a ventricular intelligent and electromechanical shunt (VIEshunt) is developed, tested, and compared with previous efforts towards the development of a smart shunt. Its key components are a micro pump, a flow meter, a pressure sensor, an inertial measurement unit, a wireless communication interface, and a microcontroller. The VIEshunt prototype was tested in vitro using a hardware-in-the-loop (HiL) test bench that runs real-time patient simulations involving changes in intracranial and intra-abdominal pressure, as well as changes in posture ranging between supine and upright position. The prototype was subsequently tested in an in vivo pilot study based on an acute ovine animal model (n=1) with infusions of artificial CSF.

Results: During 24 h in vitro testing, the prototype detected the simulated posture changes of the patient and automatically adapted the controller reference. The posture-specific ICP references of 12 mmHg for supine and -3 mmHg for upright position were tracked without offset, thus preventing adverse over- and underdrainage during the investigated HiL test scenario. During acute in vivo testing, the prototype first regulated the mean ICP of a sheep from 22 mmHg down to 20 mmHg. Each of the three subsequent intraventricular bolus infusions of 1 mL saline solution increased mean ICP by approximately 11 mmHg. While natural absorption alone decreased ICP by only 5 mmHg within 9 min, the prototype was able to regulate ICP back to the pre-bolus pressure value within 5 min.

Conclusion: The developed VIEshunt prototype is capable of posture-dependent ICP regulation and CSF drainage control. Smart shunt systems based on VIEshunt could improve patient monitoring and enable optimal physiologic therapy by adapting to the individual patient. To derive statistically relevant conclusions for the performance of VIEshunt, future work will focus on the development of a next generation prototype for use in pre-clinical studies.

Keywords: Cerebrospinal fluid; Hydrocephalus; Intracranial pressure; Patient posture; Pressure and drainage control; Smart shunt.

MeSH terms

  • Animals
  • Cerebrospinal Fluid Shunts* / instrumentation
  • Cerebrospinal Fluid Shunts* / methods
  • Disease Models, Animal
  • Equipment Design
  • Humans
  • Hydrocephalus* / physiopathology
  • Hydrocephalus* / surgery
  • Intracranial Pressure / physiology
  • Pilot Projects
  • Posture / physiology
  • Sheep