Noninvasive brain stimulation (NIBS) has emerged as a promising therapeutic approach for attention-deficit/hyperactivity disorder (ADHD), yet the inaccurate selection of stimulation sites may constrain its efficacy. This study aimed to identify novel NIBS targets for ADHD by integrating meta-analytic findings with cross-dataset validation of functional connectivity patterns. A meta-analysis including 124 functional magnetic resonance imaging (fMRI) studies was first conducted to delineate critical brain regions associated with ADHD, which were defined as regions of interest (ROIs). Subsequently, functional connectivity (FC) analysis was performed using resting-state fMRI data from two independent databases comprising 116 patients with ADHD. Surface brain regions exhibiting consistent FC patterns with the ADHD-related ROIs across both datasets were identified as candidate NIBS targets. These targets were then translated to scalp-level stimulation sites using the 10-20 system and continuous proportional coordinates (CPC). Key regions mapped to the scalp included the bilateral dorsolateral prefrontal cortex, right inferior frontal gyrus, bilateral inferior parietal lobule, supplementary motor area (SMA), and pre-SMA. These findings propose a set of precise stimulation location for NIBS interventions in ADHD, potentially broadening the scope of neuromodulation strategies for this disorder. The study emphasized the utility of cross-dataset functional connectivity analysis in refining NIBS target selection and highlights novel brain targets that warrant further investigation in clinical trials.
© 2025. The Author(s).