BRG1 deficiency in patients with lung adenocarcinoma that has metastasized to the brain, termed BRG1-deficient brain metastasis lung adenocarcinoma, is an uncommon event. Prior to this study, these patients had not undergone extensive molecular and (epi)genetic analysis. We report a comprehensive clinical, histopathologic, and molecular assessment of 9 BRG1-deficient brain metastasis lung adenocarcinoma cohort (BRG1-deficient BM cohort) in comparison with a 16 BRG1-retained brain metastasis lung adenocarcinoma cohort (BRG1-retained BM cohort). Patients with BRG1-deficient BM exhibited a significantly increased risk of mortality. Molecular analysis revealed a high prevalence of mutations in SMARCA4 and TP53 genes within this group. DNA methylation molecular diagnostics showed a high rate of genomic instability and a markedly lower DNA methylation age in these patients. Functional enrichment analysis of differentially methylated genes suggested that hypomethylation genes were primarily associated with the negative regulation of neuron differentiation, G protein-coupled receptor signaling pathways, and cell differentiation. Conversely, hypermethylation was linked to the regulation of small GTPase mediated signal transduction, Rho protein signal transduction, DNA damage response, and apoptotic processes. This study investigated a rare subgroup of lung adenocarcinoma patients with brain metastasis characterized by BRG1 deficiency and a poor prognosis. Our study not only provides a comprehensive multi-omic data resource but also provides valuable biological insights into patients. The findings may serve as a valuable reference for the future pathological diagnosis of BRG1-deficient brain metastasis in lung adenocarcinoma patients.
Keywords: BRG1-deficient; Brain metastatic; DNA methylation; Immunohistochemistry; Lung adenocarcinoma.
© 2025. The Author(s).