Despite the considerable clinical and economic burden imposed by hepatitis A virus (HAV) infection, both globally and in U.S., there are currently no available antiviral therapies for the treatment of type A hepatitis. Here we describe novel third-generation hepato-selective dihydroquinolizinones (HS-DHQs) with cellular uptake mediated by transport via hepatocyte-specific solute organic anion transporter family members 1B1 and 1B3 (OATP1B1-B3). The lead HS-DHQ compound, HS83128, demonstrates robust inhibition of the host cell TENT4A/B terminal nucleotidyltransferases required for efficient HAV RNA synthesis (IC50 6-25nM), and potent antiviral activity against HAV in cell culture (EC50 0.6 nM). Pharmacokinetic studies in CD-1 mice receiving comparable oral doses of HS83128 and a first-generation dihydroquinolizinone, RG7834, revealed a 5-fold increase in intrahepatic drug concentration and more than 10-fold improvement in liver versus nervous system tissue selectivity. Twice-daily oral administration of HS83128 rapidly arrested viral replication in HAV-infected Ifnar1-/- mice, reducing fecal virus shedding and cytokine markers of hepatic inflammation and reversing virus-induced liver injury. The hepato-selective nature of HS83128 may reduce the risk of neurologic and reproductive track toxicities observed with long-term administration of other dihydroquinolizinones, making it a candidate for the first antiviral therapy of hepatitis A.
Keywords: Antiviral drug; Hepatovirus; OATP1 transporter; PAPD poly(A) polymerase; Pharmacokinetics; Prophylaxis; TENT4 terminal nucleotidyltransferase; Therapy.
Published by Elsevier B.V.