Cystic fibrosis (CF) is a life-shortening autosomal recessive disease, caused by loss-of-function mutations that affect the CF transmembrane conductance regulator (CFTR) anion channel. G542X is the second-most common CF-causing variant, and it does not respond to current CFTR modulator drugs. Our study explores the use of adenine base editing to edit G542X to a non-CF-causing variant, G542R, and recover CFTR function. Using base editor engineered virus-like particles (BE-eVLPs) in patient-derived intestinal organoids, we achieved ∼2% G542X-to-G542R editing efficiency and restored CFTR-mediated chloride transport to ∼6.4% of wild-type levels, independent of modulator treatment, and with no bystander edits. This proof-of-principle study demonstrates the potential of base editing to rescue G542X and provides a foundation for future in - vivo applications.
Keywords: Cellular therapy; Clinical genetics; Genetic engineering; Health sciences.
© 2025 The Author(s).