Background/Objectives: Perinatal asphyxia constitutes a major complication of the perinatal period with well-described effects on multiple organs and systems of the neonate; its impact, though, on the ovaries is hardly known. The objective of the present study was to investigate potential histological alterations of the ovaries in an animal model of perinatal asphyxia with or without resuscitation. Methods: This was a prospective, randomized animal study; 26 female Large White/Landrace piglets, aged 1-4 days, were the study subjects and were randomly allocated in 3 groups. In Group A (control), the animals had their ovaries surgically removed without any manipulation other than the basic preparation and mechanical ventilation. The other 2 groups, B (asphyxia) and C (asphyxia/resuscitation), underwent asphyxia until bradycardia and/or severe hypotension occurred. At the hemodynamic compromise, animals in group B had their ovaries surgically removed, while animals in group C were resuscitated. Following return of spontaneous circulation (ROSC), the latter were left for 30 min to stabilize and subsequently had their ovaries surgically removed. The ovarian tissues were assessed by the pathologists for the presence of apoptosis, balloon cells, vacuolated oocytes, and hyperplasia of the stroma. The histological parameters were graded from 0 (absence) to 3 (abundant presence). Results: The presence of balloon cells and apoptosis was found to be more prominent in the ovaries of animals in groups B and C, compared to that of the control group at a statistically significant degree (p = 0.0487 and p = 0.036, respectively). A significant differentiation in balloon cell presence was observed in cases with higher grading (2-3) in the asphyxia group (with or without resuscitation) (p value: 0.0214, OR: 9, 95% CI: 1.39-58.4). Although no statistically significant difference was noted regarding the other 2 histological parameters that were studied, there was a marked negative correlation between the duration of asphyxia and grade of vacuoles in oocytes when the potential effect of the duration of asphyxia or resuscitation on the histological findings was investigated (r = -0.54, p = 0.039). Conclusions: We aimed at investigating the potential effect on the neonatal ovaries in our animal model of perinatal asphyxia. Given that the presence of apoptosis and balloon cells was more prominent in cases of asphyxia, it can be speculated that perinatal asphyxia might have an impact on the neonatal ovaries in addition to the other, better-studied systemic effects. More research is needed in order to clarify the potential effect of perinatal asphyxia on the ovaries.
Keywords: female reproduction; histology; neonates; ovaries; perinatal asphyxia; resuscitation.