Oxytocin receptor (OXTR) activity in the nucleus accumbens (NAc) is critical for pair bonding in prairie voles. Oxtr knockdown or pharmacological blockade in this region prevents mating-induced partner preferences, while overexpression facilitates bonding. However, no prior work has selectively interrogated or manipulated Oxtr-expressing neurons during dynamic bonding behaviors. We have developed an Oxtr-P2A-Cre prairie vole line that enables direct access to specific Oxtr neural populations. We utilized Oxtr-P2A-Cre prairie voles to express inhibitory DREADDs selectively in OXTR-expressing NAc neurons. Inhibiting NAc OXTR cells during initial cohabitation did not affect subsequent partner preference formation; however, inhibition during partner preference testing increased partner-directed huddling behavior, revealing a complex role for these neurons in social interactions. Using a viral tracing approach, we found that NAc OXTR-expressing neurons receive prominent inputs from the medial prefrontal cortex, hippocampus, thalamus, and hypothalamus, while projecting strongly to the ventral pallidum, ventral tegmental area, and lateral hypothalamus. Our cell-type-specific manipulation reveals how oxytocin receptor signaling in the NAc may modulate emotional state and facilitate the complex social behaviors underlying monogamous pair bonding. This Cre-recombinase approach demonstrates the utility of cell-type-specific targeting for elucidating oxytocin neural circuit mechanisms regulating emotional and social behavior in prairie voles.
Keywords: CRISPR; Neural circuits; Nucleus accumbens; Oxytocin; Oxytocin receptor; Social behavior; Social bonding.
Copyright © 2025 Elsevier Inc. All rights reserved.