Thyme essential oil (TEO), rich in distinct bioactivities, is extensively used in the food and pharmaceutical industries. This study uniquely integrates green ultrasound-assisted extraction (UAE) of TEO, with sustainable bioactive recovery from thyme residues. Nine ultrasound treatments with varying amplitude (40, 60 and 80 %) and time (20, 40, 60 min) were applied. The extracted TEO was analysed for yield (%), chemical composition (GC-MS), antioxidant, and antimicrobial activity. The treatment A3T1 (80 % amplitude, 20 min) came out to be the most favourable treatment with maximum yield of 1.76 % and 4.21 % for oil and bioactives, respectively. Oil demonstrated strongest antioxidant and antimicrobial activity which was supported by GC-MS profiling. For nanoencapsulation of TEO and bioactives, gum arabic offered better encapsulation characteristics with higher EE (80.13 % and 76.33 %), particle size (310 nm and 284 nm), and zeta potential (-21.1 mV and - 26.4 mV) respectively, confirmed by DSC and FTIR, making it the best option for preserving and enhancing bioactive and thyme oil qualities.
Keywords: Antimicrobial properties; Essential oil; Nanoencapsulation; Residues; Thyme grass; Thymol.
Copyright © 2025 Elsevier Ltd. All rights reserved.