Infertility represents a major global health challenge, with male infertility accounting for a significant proportion of cases, yet its underlying causes remain elusive in many instances. Traditionally, spermatozoa were viewed merely as DNA carriers, with little consideration given to their role beyond fertilization. Recent research, however, is challenging this view, revealing that spermatozoa are far more than passive delivery vehicles. They carry a complex array of molecules, particularly RNAs, which actively influence fertilization, early embryo development, and the transmission of paternal traits. These sperm-carried RNAs, including mRNAs, small RNAs, and noncoding RNAs, regulate gene expression in both spermatozoa and embryo, with profound implications for offspring development. Additionally, environmental factors, such as lifestyle choices and exposure to toxins, have been shown to affect sperm RNA composition, highlighting the dynamic interplay between genetics and the environment in shaping fertility. This emerging and evolving understanding of sperm function challenges traditional reproductive biology and offers new insights into male infertility, particularly in cases that remain unexplained by current diagnostic methods. Although the exact molecular mechanisms underlying these processes are still being investigated, this paradigm shift opens the door to innovative diagnostic tools and therapeutic strategies for treating male infertility. By uncovering the critical role of sperm RNAs, these findings not only enhance our understanding of reproductive biology but also hold the promise to improve assisted reproductive technologies and outcomes for infertile couples.
Keywords: RNAs; embryo development; fertilization; spermatozoa; transcriptome; transcripts.
© The Author(s) 2025. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. See the journal About page for additional terms.