Despite high-throughput and large-scale phenotyping becoming easier, interpretation of such data in cattle production remains challenging due to the complex and highly correlated nature of many traits. Underlying biological traits (UBT) of economic importance are defined by a subset of easy-to-measure traits, leading to challenges in making appropriate selection decisions on them. Research on UBT in beef cattle is limited. In this study, the phenotypic data of admixed beef heifers (n = 336) for reproductive, body conformation, and carcass-related traits (traits, t = 35) were used to identify latent variables from factor analysis (FA) that can be characterized as UBT. Given sample size constraints for carcass (n = 161) and other body size-related traits (n = 336), two models were explored. In Model 1, all individual traits were considered (n = 161), while in Model 2, the dataset was split into body size (n = 336) and carcass (n = 161) traits to maximize available heifers per dataset. A combination of FA and Bayesian network (BN) learning was adopted to develop UBT and infer BN structure for subsequent analyses. All heifers (n = 336) were genotyped using GeneSeek Genomic Profiler 150K for Beef Cattle. Following quality checks, 117,373 autosomal SNP markers were retained and used for genomic estimated breeding values (gEBV) in BN learning steps. Using exploratory and confirmatory FA, Body Size (BS) and Body Composition (BC) were identified as UBT for Model 1, explaining 14 phenotypic traits (t = 14). For Model 2, BS, Ovary Size, and Yield Grade (YG) were identified as UBT, explaining 12 phenotypic traits (t = 12). When using gEBV, the causal network structure inferred showed BS contributed to BC in Model 1 and to Ovary Size in Model 2. Therefore, a structure equation-based approach should be used in subsequent modeling for these traits. From Model 2, YG should be modeled univariately. This study is the first to identify UBT in growing admixed heifers using body size, conformation, and carcass traits. We also identified that BC and YG did not explain intra-muscular fat and body density, indicating these two traits should also be modeled univariately.
Keywords: Bayesian network; factor analytic models; heifer development; latent phenotypes; multi-trait modeling; phenomics.
Copyright © 2025 Anas, Zhao, Yu, Dahlen, Swanson, Ringwall and Hulsman Hanna.