Protein O-GlcNAcylation plays a crucial role in Drosophila melanogaster development. Dysregulation of O-GlcNAc transferase (sxc/Ogt) and O-GlcNAcase (Oga) disrupts early embryogenesis and locomotor behavior. It is therefore of great interest to identify and quantitatively analyze O-GlcNAcylation sites in Drosophila. Here, we perform quantitative and site-specific profiling of O-GlcNAcylation in Drosophila by employing a chemoenzymatic labeling strategy. A total of 2196 unambiguous O-GlcNAcylation sites and 1308 O-GlcNAcylated proteins are identified. Quantitative analysis of O-GlcNAcylation in the head of Drosophila with sxc/Ogt knockdown in GABAergic neurons reveals a reduction in O-GlcNAcylation of several proteins involved in muscle development, consistent with the phenotypic defects observed in sxc/Ogt RNAi Drosophila. Furthermore, quantitative analysis of O-GlcNAcylation under a high-sugar diet reveals altered O-GlcNAcylation of several proteins associated with obesity and neurological diseases, such as Hex-A and Ankyrin 2. Our study not only establishes an effective method for large-scale identification of O-GlcNAcylation sites, but also provides a valuable resource for studying O-GlcNAc biology in Drosophila.
Keywords: Chemoproteomic; Drosophila melanogaster; High-sugar diet; Muscle development; O-GlcNAcylation.
Copyright © 2025 Elsevier Ltd. All rights reserved.