Modern clinical trials can capture tens of thousands of clinicogenomic measurements per individual. Discovering predictive biomarkers, as opposed to prognostic markers, remains challenging. To address this, we present a neural network framework based on contrastive learning-the Predictive Biomarker Modeling Framework (PBMF)-that explores potential predictive biomarkers in an automated, systematic, and unbiased manner. Applied retrospectively to real clinicogenomic datasets, particularly for immuno-oncology (IO) trials, our algorithm identifies biomarkers of IO-treated individuals who survive longer than those treated with other therapies. We demonstrate how our framework retrospectively contributes to a phase 3 clinical trial by uncovering a predictive, interpretable biomarker based solely on early study data. Patients identified with this predictive biomarker show a 15% improvement in survival risk compared to those in the original trial. The PBMF offers a general-purpose, rapid, and robust approach to inform biomarker strategy, providing actionable outcomes for clinical decision-making.
Keywords: AI; ML; NSCLC; biomarkers; cancer; clinical trials; immunotherapy; omics; predictive biomarkers; translational medicine.
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.