Purpose: Mesenchymal stem cells (MSCs) represent a promising therapeutic strategy in clinical research for dry eye, and their immunomodulatory effects can be enhanced through genetic modification. In this study, we constructed interleukin-10 (IL-10) gene-modified adipose-derived MSCs (IL-10-ADSCs) and investigated their protective effects and underlying mechanisms on rabbit autoimmune dacryoadenitis, an animal model of autoimmune dry eye.
Methods: ADSCs were isolated from rabbit adipose tissue and transduced with IL-10 overexpressing lentivirus. Then the preventive and therapeutic effects of IL-10-ADSCs on rabbit autoimmune dacryoadenitis were evaluated. Flow cytometry and Western blot were performed to assess the immunomodulatory effects of IL-10-ADSCs on T follicular helper (Tfh) cells. Bioinformatic analyses and functional gain and loss assays were used to determine the molecular mechanism underlying the effects of IL-10-ADSCs on Tfh responses.
Results: We demonstrated that IL-10-ADSCs maintain the cell surface phenotype and multi-differentiation potentials of MSCs. Intravenous injection of IL-10-ADSCs markedly attenuated autoimmune dacryoadenitis, yielding significantly superior clinical and pathological improvements compared to ADSCs. Further investigation revealed that IL-10-ADSCs administration significantly suppressed Tfh cell responses in vivo and in vitro, contributing to reduced inflammation and improved tissue damage. Mechanistically, IL-10-ADSCs exert their suppressive function on Tfh cells partially through the miR-142-5p/RC3H1 axis. Notably, IL-10-ADSCs subconjunctivally administered after disease onset efficiently ameliorated the severity of autoimmune dacryoadenitis.
Conclusions: IL-10-ADSCs ameliorate autoimmune dacryoadenitis by suppressing Tfh cell responses via suppressing the miR-142-5p/RC3H1 axis. The enhanced therapeutic effects of IL-10-ADSCs could be of significant value in improving the effectiveness of stem cell therapy in autoimmune dry eye.