Acoustic target recognition has always played a central role in marine sensing. Traditional signal processing techniques that have been used for target recognition have shown limitations in accuracy, particularly with commodity hardware. To address such limitations, we present the results of our experiments to assess the capabilities of AI-enabled acoustic buoys using OpenEar™, a commercial, off-the-shelf, software-defined hydrophone sensor, for detecting and tracking fast-moving vessels. We used a triangular sparse sensor network to investigate techniques necessary to estimate the detection, classification, localization, and tracking of boats transiting through the network. Emphasis was placed on evaluating the sensor's operational detection range and feasibility of onboard AI for cloud-based data fusion. Results indicated effectiveness for enhancing maritime domain awareness and gaining insight into illegal, unreported, and unregulated activities. Additionally, this study provides a framework for scaling autonomous sensor networks to support persistent maritime surveillance.
Keywords: OpenEar™; acoustic target recognition; artificial intelligence; localization; marine domain awareness (MDA).