Phenotypic differences in mephenytoin pharmacokinetics in normal subjects

J Pharmacol Exp Ther. 1985 Sep;234(3):662-9.

Abstract

The urinary metabolic profile of mephenytoin and its oxidative metabolites indicates significant stereoselective metabolism of its two enantiomers. Also, polymorphic oxidation, which is present in about 2 to 5% of the Caucasian population, has been demonstrated by an impaired ability to 4-hydroxylate this anticonvulsant. In order to determine the consequences of such metabolism, the plasma concentration/time profiles of the enantiomers of mephenytoin and its N-demethylated metabolite, phenylethylhydantoin (PEH), were investigated after a single p.o. dose of racemic mephenytoin in normal subjects with different metabolizing ability for mephenytoin [extensive metabolizer (EM) vs. poor metabolizer (PM) phenotypes]. In the EM subjects, the disposition of S- and R-mephenytoin was markedly different with a 100- to 200-fold difference in mean oral clearance (4.7 vs. 0.027 liters/min) and a 30- to 40-fold difference in elimination half-life (2.1 vs. 76 hr). In these same subjects, R-PEH concentrations significantly accumulated over several days and then very slowly declined with an apparent half-life of about 200 hr. Plasma levels of S-PEH were essentially negligible. In contrast, the stereoselective elimination of mephenytoin was reduced markedly in subjects of the PM phenotype, with the disposition of the S-enantiomer being the same as that for R-mephenytoin, which in turn was similar to that observed for this enantiomer in EMs. Almost comparable plasma levels of S- and R-PEH were also present in PMs. Only a small amount (less than 5%) of unchanged mephenytoin was excreted in the urine regardless of phenotype.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Aged
  • Humans
  • Hydantoins / metabolism*
  • Hydroxylation
  • Kinetics
  • Male
  • Mephenytoin / metabolism*
  • Middle Aged
  • Phenotype
  • Stereoisomerism

Substances

  • Hydantoins
  • Mephenytoin