Tight junction formation in cultured epithelial cells (MDCK)

J Membr Biol. 1985;86(2):113-25. doi: 10.1007/BF01870778.


Synthesis and assembly of tight junctions are studied in monolayers of MDCK cells plated at a density sufficient for confluence, allowed to attach for 1 hr, and transferred to fresh media without cells containing or not Ca2+. 20 hr later, while monolayers with Ca2+ have fully developed junctions that confer an electrical resistance across of 346 +/- 51 omega cm2, those without Ca2+ have a negligible resistance. If at this time Ca2+ is added, junctions assemble and seal with a fast kinetics, that can be followed through the development of electrical resistance, penetration of ruthenium red, and electron microscopy. Drugs that impair synthesis, maturation and transport of proteins (cycloheximide, tunicamycin, monensin) indicate that protein components are synthesized early upon plating, do not seem to require N-glycosylation, and are stored in the Golgi compartment. Upon addition of Ca2+ they are transferred to the membrane with the participation of microfilaments but not of microtubules. These components seem to insert directly in the position they occupy in the strands, and the cell circles its perimeter with one strand as early as 15 min, even if in some segments it only consists of a row of particles. New strands develop in association with previous ones, and the pattern completes in 4 to 6 hr. Ca2+ is required for the maintenance of the assembly and also for the sealing with neighboring cells. These processes cannot occur below 25 degrees C. Serum is not required. Polarized distribution of intramembrane particles (IMP) in apical and basolateral regions follows the same time course as junction formation, in spite of the fence constituted by those strands that are already assembled. This suggests that IMP do not redistribute by lateral displacements in the plane of the membrane, but by removal and insertion in the apical and basolateral domains.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Calcium / pharmacology
  • Cell Line
  • Cytochalasin B / pharmacology
  • Dogs
  • Electric Conductivity / drug effects
  • Freeze Fracturing
  • Intercellular Junctions / drug effects
  • Intercellular Junctions / physiology*
  • Intercellular Junctions / ultrastructure
  • Kidney
  • Kinetics
  • Microscopy, Electron


  • Cytochalasin B
  • Calcium