This study investigates key microscopic regions involved in colorectal cancer liver metastasis (CRLM), focusing on the crucial role of cancer-associated fibroblasts (CAFs) in promoting tumor progression and providing molecular- and metabolism-level insights for its diagnosis and treatment using multi-omics. We followed 12 fresh surgical samples from 2 untreated CRLM patients. Among these, 4 samples were used for spatial transcriptomics (ST), 4 for spatial metabolomics, and 4 for single-cell RNA sequencing (scRNA-seq). Additionally, 92 frozen tissue samples from 40 patients were collected. Seven patients were used for immunofluorescence and RT-qPCR, while 33 patients were used for untargeted metabolomics. ST revealed that the spatial regions of CRLM consists of 7 major components, with fibroblast-dominated regions being the most prominent. These regions are characterized by diverse cell-cell interactions, and immunosuppressive and tumor growth-promoting environments. scRNA-seq identified that SPP1+ fibroblasts interact with CD44+ tumor cells, as confirmed through immunofluorescence. Spatial metabolomics revealed suberic acid and tetraethylene glycol as specific metabolic components of this structure, which was further validated by untargeted metabolomics. In conclusion, an SPP1+ fibroblast-rich spatial region with metabolic reprogramming capabilities and immunosuppressive properties was identified in CRLM, which potentially facilitates metastatic outgrowth through interactions with tumor cells.
Keywords: SPP1(+) fibroblasts; colorectal cancer liver metastasis; metabolic reprogramming; spatial metabolism; spatial transcriptomic.
Copyright © 2025 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.