One of the main focuses of glycobiology is investigating the synthesis and modification of carbohydrates in biological systems, due to their involvement in various processes such as cell recognition, differentiation, and immune response. Since the study of these glycans contributes to the understanding of complex biological functions, these biochemical compounds can be analyzed using lectins, which are ubiquitous proteins in nature capable of specifically recognizing carbohydrates. In addition, lectin-carbohydrate interaction can be visualized by conjugating these proteins with quantum dots (QDs), which are fluorescent nanoprobes with advantageous properties, including photostability and size-tunable emission. QDs also possess chemically active surfaces that enable the attachment of biomolecules, such as lectins. In this review, we provide detailed reports of studies involving QD-lectin conjugates conducted by the Biomedical Nanotechnology Group at the Federal University of Pernambuco (UFPE/Brazil) and its collaborators. An integrated perspective on the use of QD-lectin conjugates to study saccharides in a range of biological systems, from bacteria and fungi to red blood cells and cancer tissues, is also presented. We hope this comprehensive review inspires further studies exploring the brightness of lectins upon conjugation with QDs to unravel glycobiological processes.
Keywords: Biological systems; Carbohydrate; Fluorescence; Nanocrystal.
© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2025. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.