Methylthioadenosine phosphorylase (MTAP) gene deletions are frequent in human cancers. Loss of MTAP leads to significantly increased cellular levels of methylthioadenosine (MTA), a cellular metabolite and specific inhibitor of the cell-essential enzyme Protein Arginine Methyltransferase-5 (PRMT5). Using a cofactor-directed screening strategy and DNA-encoded libraries, we identify a class of PRMT5 inhibitors that cooperatively inhibit PRMT5 in the presence of MTA. An optimized inhibitor, AM-9934, selectively inhibits PRMT5 in MTAP-deleted cells and in transplanted tumors while sparing MTAP-expressing counterparts, leading to specific suppression of viability in MTAP-deleted cells. Structural studies show that AM-9934 occupies the arginine substrate pocket of MTA-bound PRMT5. This study introduces a broadly applicable method for directed DNA-encoded library screening toward a desired mechanistic outcome and highlights MTA-selective PRMT5 inhibition as an attractive therapeutic strategy with a potentially broad therapeutic index in patients with MTAP-deleted cancers.
Keywords: DNA-encoded library screens; PRMT5; cancer.