Hypertension is a prevalent disease that substantially elevates the risk of neurological disorders such as dementia, stroke and Parkinson's disease. MicroRNAs (miRNAs) play a critical role in the regulation of gene expression related to brain function and disorders. Understanding the involvement of miRNAs in these conditions could provide new insights into potential therapeutic targets. The main objective of this study is to target and investigate microRNAs (miRNAs) associated with neurological disorders in patients suffering from hypertension. The genes involved in hypertension were identified from various databases including GeneCard, MalaCard, DisGeNet, OMIM & GEO2R. The key gene for hypertension was identified using a systems biology approach. Also, potent phytochemical for hypertension was determined by computer-aided drug-designing approach. Functional miRNAs were determined for the key target gene using miRNet analytics platform by hypergeometric tests. Further, the gene-miRNA interaction was determined and enrichment analysis was done. RPS27A was identified as a key target gene for hypertension. Naringenin showed effective molecular interaction with RPS27A with a binding energy score (-6.28). Further, a list of miRNAs which were targeting brain disorders was determined from miRNet. A gene-miRNA network was constructed using the PSRR tool for Parkinson's Disease, Autism Spectrum Disorder, Acute Cerebral Infarction, ACTH-Secreting Pituitary Adenoma, & Ependymoma. Further, miRNA 21 & miRNA 16 were found to be associated with four of the neurological disorders. The study identifies specific miRNAs that may serve as potential biomarkers for brain disorders in hypertensive patients. Targeting these miRNAs could open new avenues for therapeutic strategies aimed at mitigating neurological damage in this patient population.
© 2025. The Author(s), under exclusive licence to Springer Nature Limited.