Background: This study aimed to develop a predictive model for acute gastrointestinal (GI) and genitourinary (GU) toxicity in prostate cancer patients treated with salvage radiotherapy (SRT) post-prostatectomy, using machine learning techniques to identify key prognostic factors.
Methods: A multicenter retrospective study analyzed 454 patients treated with SRT from three Italian radiotherapy centers. Acute toxicity was assessed using Radiation Therapy Oncology Group criteria. Predictors of grade ≥ 2 toxicity were identified through Least Absolute Shrinkage and Selection Operator (LASSO) regression and Classification and Regression Tree (CART) modeling. The analyzed variables included surgical technique, clinical target volume (CTV) to planning target volume (PTV) margins, extent of lymphadenectomy, radiotherapy technique, and androgen-deprivation therapy (ADT).
Results: No patients experienced grade ≥ 4 toxicity, and grade 3 toxicity was below 1% for both GI and GU events. The primary determinant of acute toxicity was the surgical technique. Open prostatectomy was associated with significantly higher grade ≥ 2 GI (41.8%) and GU (35.9%) toxicity compared to laparoscopic/robotic approaches (18.9% and 12.2%, respectively). A CTV-to-PTV margin ≥ 10 mm further increased toxicity, particularly when combined with extensive lymphadenectomy. SRT technique and ADT were additional predictors in some subgroups.
Conclusions: SRT demonstrated excellent tolerability. Surgical technique, CTV-to-PTV margin, and treatment parameters were key predictors of toxicity. These findings emphasize the need for personalized treatment strategies integrating surgical and radiotherapy factors to minimize toxicity and optimize outcomes in prostate cancer patients.
Keywords: LASSO regression; acute toxicity; androgen-deprivation therapy; gastrointestinal toxicity; genitourinary toxicity; machine learning; planning target volume; predictive model; prostate cancer; salvage radiotherapy.