The vestibuloocular reflex of the adult flatfish. II. Vestibulooculomotor connectivity

J Neurophysiol. 1985 Oct;54(4):900-16. doi: 10.1152/jn.1985.54.4.900.

Abstract

The peripheral and central oculomotor organization of the adult flatfish presents no morphological substrates that suffice to explain adaptive changes in its vestibuloocular reflex system. The necessity for an adaptation occurs because of a 90 degrees displacement of the vestibular with respect to the extraocular coordinate axes during metamorphosis. Since a reorganization of vestibuloocular pathways must be hypothesized (12), the location and termination of electrophysiologically identified secondary vestibular neurons with focus on the horizontal canal system was studied with the intracellular horseradish peroxidase method in adult winter flounders. Pseudopleuronectes americanus. The oculomotor target sites of vertical canal related neurons were similar to those described in mammals. Presumed excitatory anterior canal neurons bifurcated after the main axon had crossed the midline. The descending branch headed toward the spinal cord. The ascending branch reached the oculomotor nucleus via the contralateral medial longitudinal fasciculus and terminated in the superior rectus and inferior oblique subdivisions. Presumed inhibitory posterior canal neurons ascended ipsilaterally in the medial longitudinal fasciculus and terminated mainly in the superior rectus and inferior oblique subdivisions. Horizontal canal neurons exhibited characteristics distinctly different from mammalian ones. Two types of second-order neurons were observed. In the first case, cell bodies were located in the anterior portion of the vestibular nuclear complex. After crossing the midline, the axon ascended in the contralateral medial longitudinal fasciculus. Major termination sites were found in the inferior oblique and superior rectus subdivisions of the oculomotor nucleus. Axonal branches then recrossed the midline and terminated in identical locations on the ipsilateral side. In the second case, cell bodies were located in the descending vestibular nucleus. Their axons crossed the midline and also ascended in the contralateral medial longitudinal fasciculus. Major termination sites were in the trochlear nucleus and in the inferior rectus subdivision of the oculomotor nucleus. As in the first case, axonal branches also recrossed the midline and terminated in identical motoneuron pools on the ipsilateral side. The above target sites were exactly those expected to be used in a reciprocal excitatory-inhibitory fashion during compensatory eye movements. Head-down movement would be excitatory for the lower horizontal canal producing contractions of both superior recti and inferior obliques as well as relaxation of the antagonistic inferior recti and superior obliques.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adaptation, Biological
  • Animals
  • Brain Stem / anatomy & histology*
  • Fishes / anatomy & histology*
  • Mesencephalon / anatomy & histology*
  • Neural Pathways / anatomy & histology
  • Oculomotor Nerve / anatomy & histology*
  • Semicircular Canals / innervation*
  • Trochlear Nerve / anatomy & histology*
  • Vestibular Nerve / anatomy & histology*
  • Vestibular Nuclei / anatomy & histology